

CALculations

Pearsonvue (KSA)

الأسئله خاصه لأسئلة بيرسون فيو لتخصص الصيدله للحصول على
 يتكون الاختبار من 100 سؤ ال اختياري يتكون من 3 اجزاء 1- أسئله Cases -3 فارماكولجى 2- مسائل رياضية

$$
\begin{aligned}
& \text { الدذكره مجانيه وليست للبيع المقابل الوحيد هو الاعاء لمن تعب و ساهم فیى تجميع هذه }
\end{aligned}
$$

هو جديد نظراً للتحديث الذى يتم كل فتره على الأسئله من فبل شركة بيرسون فيو و رابط
الجروب :
https://www.facebook.com/groups/pearsonvue.questions

1.Laws:

- $\mathrm{Vd}=\mathrm{dose}$ /co
$\mathrm{Vd}=$ Volume of distribution
Co = Conc. of drug in plasma at zero time
- Loading dose $=\mathrm{Vd} \times$ Css

Loading dose $=$ Vd [C2 - C1]

- Loading dose .. is the dose needed to reach steady state
- Css = Concentration of the drug in blood at steady state
- C1 = Concentration of the drug in plasma
$-\mathrm{C} 2=$ Concentration of the drug needed to add to C 1 to reach equired conc.
- At steady state rate of drug input=rate of elimination
- Time required to reach steady state (Tss) $=4.5$ or $5 \mathrm{t} 1 / 2$
- Half life $(\mathrm{T} 1 / 2)=$ the time required for the concentration of a substance in the body to decrease by half.
- Therapeutic index (TI) =LD50/ED50
- LD50 = Median Lethal Dose is the amount of an agent that is sufficient to kill 50 percent of a population of animals
- ED50 = Median Effective Dose is the dose that produces a quantal effect in 50% of the population
- Drugs with narrow TI = highly dangerous
- Bioavailability =AUC/conc

Bioavailability = AUC ((oral)) /AUC ((iv)) x 100
Bioavailability =plasma conc of drug by any route/plasma conc of drug by iv
AUC = Area Under Curve

- \quad Specific gravity $=\mathrm{Wt}$. of substance $((\mathrm{Kg})) / \mathrm{Wt}$. of equal amount of water ((L))

Specific gravity = mass unit volume of sub. / mass unit volume of water
Specific gravity = Denisty of sub. / Denisty of equal amount of water
Denisty = Mass ((gm)) / Volume ((ml)) .. or Kg/L

- $\mathrm{mEq}=\mathrm{Wt} .((\mathrm{mg})) \times$ valency / M.wt
$\mathrm{mEq}=$ milliequivalent

Clearance Laws:

- Clearance (Cls) $=0.693 \times$ Vd / T 1/2
- Vd=dose/co
- CIs=rate of elimination/drug conc
- Cls =renal cls +non renal cls
- $\mathrm{Cls}=\mathrm{Ke} \times \mathrm{Vd} \ldots \ldots . . \mathrm{Ke}=$ elimination rate conistant
- Creatinine clearance for male $=(140-$ age $) \times$ weight $/ 72 \times$ ser. Creatinine
- Cr.cls for female $=$ Cr.cls for male $\times 0.85$

Molality Laws :

- Molality $((\mathrm{m}))=$ No. of moles of solute $/ \mathrm{Kg}$ mass of solvent
- No. of moles = Wt. of solute / M.wt
- Mass ((M)) = Denisty ((D)) x Volume ((V))

Molarity Laws :

- Molarity $((\mathrm{M}))=$ No. of moles of solute $/ \mathrm{L}$ volume of solution

Osmolarity laws:

- Millimoles $=$ [wt. of sub. ((gm)) / M.wt] x 1000
- mosm = millimoles \times no. of species

Examples Of no. of species:
$\mathrm{Ex1}: \mathrm{NaCl}=1 \mathrm{Na}+1 \mathrm{Cl}=2$ \qquad $\mathrm{Ex} 2: \mathrm{CaCl} 2=1 \mathrm{Ca}+2 \mathrm{Cl}=3$
--- check problems No. 11 \& 12

Some Conversions :

Weight:

- $\mathrm{Kg}=2.2$ Pound ((lb))
- Grain $=0.065 \mathrm{gm}$

Volume:

- Tea spoonful $(($ tsp $))=5 \mathrm{ml}$
- Table spoonfull ((tbsp)) $=15 \mathrm{ml}$
- 16 drop $((\mathrm{dp}))=1 \mathrm{ml}$
- 1 fluid ounce $=30 \mathrm{ml}$
- $1 \mathrm{~L}=0.22$ Gallon
- $1 \mathrm{~L}=10$ Decilitre

Tempreture:

- $5 F=9 C+160$

F = Fehrenhiet \qquad $\mathrm{C}=$ clsius
Length:

- 1 fool $((\mathrm{ft}))=12$ inch
- 1 inch $=2.54 \mathrm{~cm}$

Others :

- PPM = Part Per Milion = mg / L
- $10 \% \mathrm{w} / \mathrm{w}=10 \mathrm{gm}$ in $90 \mathrm{gm}(($ total $\mathrm{wt} .=100 \mathrm{gm}))$--------- w/w = gm in gm
- $10 \% \mathrm{w} / \mathrm{v}=10 \mathrm{gm}$ in $100 \mathrm{ml}(($ total voume $=100 \mathrm{ml}))$ \qquad in ml
- $10 \% \mathrm{v} / \mathrm{v}=10 \mathrm{ml}$ in $90 \mathrm{ml}(($ total voume $=100 \mathrm{ml}))----------\mathrm{v} / \mathrm{v}=\mathrm{ml}$ in ml

Some Molculer weights you may use:

- $\mathrm{HCl}=36.4$
- $\mathrm{NaCl}=58.5$
- $\mathrm{CaCl} 2=111$
- $\mathrm{Kcl}=74.5$
- $\mathrm{NH} 4 \mathrm{Cl}=53.5$
- $\mathrm{MgCl} 2=95.2$

Some other laws haven't be used till now but may be useful for you ((just read)) :

- Child dose $=\mathrm{wt}((\mathrm{lb})) / 150 \times$ adult dose

Child dose $=$ age $/($ age +12$) \times$ adultdose

- $E=$ Extraction ration = drug elimination of an organ ((eg. Liver))
$\mathrm{E}=$ [arterial drug conc. - venous drug conc.] / arterial drug conc.
Cls of liver $=\mathrm{E} \times$ hepatic blood flow

2.Problems:

1- amount of drug is 5 mg in 1 ml what the amount of drug in 1
tsp in microgram
a) 5
b) 25
c) 500
d) 2500
e) 25000

Answer:
$1 \mathrm{tsp}=5 \mathrm{ml}$
$5 \mathrm{mg} \ldots .1 \mathrm{ml}$
X mg 5 ml
$X=5 \times 5 / 1=25 \mathrm{mg}=(25 \times 1000) 25000 \mathrm{mcg}$

2- A solution is made by dissolving 17.52 g of NaCl exactly 2000 ml .
What is the molarity of this solution?
a- 3.33
b- 0.15
c- 1.60
d-3.00 x $10-4$
e-1.6×10-4

Answer :
Molarity=mole/volume (L)
1 Mole=molecular weight of subs. In 1 grams
No of Moles = wt / Mwt
So, molecular weight of NACL=23+34=57
So, Mole=17.52/57=0.307
So, Morality $=0.307 / 2=0.153$
$3-5 \mathrm{ml}$ of injection that conc. 0.4% calculate the amount of drug?
a-0.2mg
b-2mg
c-200mg
d-2000mg
e-20mg
Answer:
$0.4 \mathrm{gm} . . .100 \mathrm{ml}$
$X \mathrm{gm} \ldots 5 \mathrm{ml}$
$X=5 \times 0.4 / 100=0.02 \mathrm{gm}=(0.02 \times 1000)=20 \mathrm{mg}$

4-An elixir contains 0.1 mg of drug X per ml . HOW many micrograms are there in one tsp of the elixir
A. 0.0005 micrograms
B. 0.5 micrograms
C. 500 micrograms
D. 5 micrograms
E. 1500 micrograms

Answer :
0.1 mg in 1 ml

X mg in 5 ml
$\mathrm{X}=0.1 \times 5 / 1=0.5 \mathrm{mg}=500 \mathrm{micro}$

5- sol contain D5W another one contain D50W we want to prepare sol cotain D15W its volune is 450 ml ... how much ml we need of each sol
a) $\mathrm{D} 50 \mathrm{w} / \mathrm{D} 5 \mathrm{w}=10 / 35$

Answer:
try the choices ratio in the equation :
$(\mathrm{C} 1 \times \mathrm{V} 1)+(\mathrm{C} 2 \times \mathrm{V} 2)=(\mathrm{C} \times \mathrm{V})$
$(50 \times 10)+(5 \times 35)=(15 \times 45)$
Another answer :
(X) 50
15
(Y) 5 \qquad
35 $15-5=10$
10

$50-15=35$
$X / Y=10 / 35$ $Y=3.5 X$
$X+Y=450$ $X+3.5 X=450$
$4.5 X=450-------\quad X=450 / 4.5=100$
$\mathrm{Y}=3.5 \mathrm{X}=3.5 \times 100=350$
$X=$ amount of D50w $\ldots . Y=$ amount of D5w

6- prescription
hydrocortisone 2\%
Cold cream 60 gm
You have concentrations of hydrocortisone 2.5% \& 1% how many grams will you use from two concentration?
a- 20 gm from 1% and 40 gm from 2.5%
b- 40 gm from 1% and 20 gm from 2.5%
c- 30 gm from both
Answer:
try the choices ratio in the equation
$(\mathrm{C} 1 \times \mathrm{V} 1)+(\mathrm{C} 2 \times \mathrm{V} 2)=(\mathrm{C} \times \mathrm{V})$
$(1 \times 20)+(2.5 \times 40)=(2 \times 60)$

Another answer :
(X) 2.5\% \qquad $2-1=1$ 2\%
(Y) 1% \qquad 0.5

$$
2.5-2=0.5
$$

$X / Y=1 / 0.5$------------- $X=0.5 Y$
$X+Y=60$-------- $0.5 Y+Y=60$
$1.5 Y=60---------Y=60 / 1.5=40$
$X=0.5 Y=0.5 \times 40=20$
$\mathrm{X}=$ amount of $2.5 \% \ldots . \mathrm{Y}=$ amount of 1%

7-Prescription

hydrocortisone 2\% w/w
Cold cream 60gm
you have hydrocortisone solu. $100 \mathrm{mg} / \mathrm{ml}$.. how many milliliters will you use from the solution?
a. 10 ml

b. 20 ml

c. 40 ml

Answer:
$2 \% \mathrm{w} / \mathrm{w}=2 \% \times 100 \mathrm{gm}=2 \mathrm{gm} \quad$ means the prep. needs 2 gm of hydrocortisone
0.1 gm in 1 ml

2 gm in X ml
$X=1 \times 2 / 0.1=20 \mathrm{ml}$

8 - if we have 0.8687 g cacl 2 in 500 ml solvent , denisty of the solvent is 0.95 glcm3 \qquad Find the molality

a- 0.0165 Molal

b- 0.0156 Molal
c- 0.0165 m
d- 0.0156 m
Answer:
Moles $=\mathrm{mass} / \mathrm{m} . \mathrm{wt}=0.8687 / 111=0.00782$
Weight $=$ density \times volume $=0.95 \times 500=475 \mathrm{gm}=0.475 \mathrm{~kg}$
Molality $=$ moles $/ \mathrm{kg}$ of solvent $=0.00782 / 0.475=0.0165$ molal
9. How gm of substance X must added to 2000 gm of 10% substance X solution in order to prepare 25% of substance \times solution
a) 10000 gm
b) 400 gm
c) 40 gm
d) 10 gm
e) 0.4 gm

Answer:

$$
\begin{aligned}
& (C 1 \times V 1)+(C 2 \times V 2)=(C \times V) \\
& (100 \% \times X g m)+(10 \% \times 2000 \mathrm{gm})=(25 \% \times 2000+X \mathrm{gm}) \\
& 100 X+20,000=50,000+25 X \\
& 100 X-25 X=50,000-20,000 \\
& 75 X=30,000 \quad \ldots . . X=30,000 / 75=400 \mathrm{gm}
\end{aligned}
$$

Another answer :

100\% \qquad 15 25%
10\% \qquad 75
$25-10=15$
$100-25=75$
so the ratio between 100\% : 10 \% to reach $25 \%=15: 75$
2000 gm 75
X gm 15
$X=2000 \times 15 / 75=400 \mathrm{gm}$

10- How much water (in milliliters) should be added to 250 mL of $1: 500 \mathrm{w} / \mathrm{v}$ solution of benzalkonium chloride to make a 1:2000 w/v solution

A/0.4L

B/2L
C/0.2L
D/ 0.05L
Answer:
250/500 $=0.5$
$250 / 2000=0.125$
$0.5-0.125=0.375$

11-How many mOsm are present in 1 liter of sodium chloride injection
(Mwt: sodium chloride=58.5) ?

308 mosm

Answer:

- Note ; normally conc. of NaCl injection $=0.9 \%$ that means 0.9 gm in 100 ml \qquad that means 9 gm in 1 L
- Step 1.
millimoles $=\mathrm{wt}(\mathrm{gm}) / \mathrm{Mwt}(\mathrm{gm}) \times 1000=9 / 58.5 \times 1000=154$
Note ; millimole $=$ wt $(\mathrm{mg}) / \mathrm{Mwt}(\mathrm{gm})$
- Step 2.
$\mathrm{mOsm}=$ millimoles \times no. of dissosation particles $=154 \times 2=308 \mathrm{mosm}$

12-A solution contains 448 mg of $\mathrm{KCl}(\mathrm{MW}=74.5)$ and 468 mg of $\mathrm{NaCl}(\mathrm{MW}=$ 58.5) in 500 mL . What is the osmolar conc. of this solution?

0.056 Osm/l

Answer:

- For (KCl)
0.448 gm in 500 ml
X gm in $1000 \mathrm{ml} \quad \ldots . . \mathrm{X}=0.896 \mathrm{gm}$
moles $=0.896 / 74.5=0.012$
Osm= moles \times no. of dissosation particles $=0.012 \times 2=0.024$
- For NaCl
0.468 gm in 500 ml
X gm in $1000 \mathrm{ml} \quad \ldots . . \mathrm{X}=0.936 \mathrm{gm}$
moles $=0.936 / 58.5=0.016$
Osm= $0.016 \times 2=0.032$
- Total osmalar conc. of sol. $=0.032+0.024=0.056 \mathrm{Osm} / \mathrm{l}$

13. A Patient weighting 80 Kg is supposed to receive a drug at a dose of $2 \mathrm{mg} / \mathrm{kg} /$ day. What is the dose that the patient should take for each day:
A. 80 mg
B. 160 mg
C. 240 mg
D. 320 mg
E. 400 mg
14. Drug X is a given to a 70 Kg patient at an infusion rate of $0.95 \mathrm{mg} / \mathrm{kg} / \mathrm{hr}$. How much drug we need for a 12-hr infusion bottle
A. 798 mg
B. 66.5 mg
.....
C. 665 mg
D. 84 mg
15. how many gm of water add to $5 \% \mathrm{KCL}$ soln to make 180 gm of solution(w/w)?

171 gm

Answer:
5 gm 100
Xgm 180
$X=5 \times 180 / 100=9 \mathrm{gm}$
So, the amount of water is:- $180-9=171 \mathrm{gm}$
16. hypoparathyroid patient with tingling and numbness has the following lab result so what is value of calcium correlative to albumin when below 45

	Result	normal value
Calcium	1.6	$2.25-2.6$
Albumin	34	$18-56$

a.2.3 b-1.5 c-2.5
N.B: 2.3 is a Conistant value you have to know
17. in clinic patient prescriped with a 500 mg dose of aspirin , initial plasma conc is 100 mg .. With half life 6 hours calculate total body clearance?
a. $0.5 \mathrm{~L} / \mathrm{hr}$
b. $5 \mathrm{~L} / \mathrm{hr}$
c. $50 \mathrm{~L} / \mathrm{hr}$

Answer:
$\mathrm{Vd}=$ dose $/$ initial conc $=500 / 100=5 \mathrm{~L}$
..... $\mathrm{T} 1-2=6 \mathrm{hr}$
$\mathrm{Cl}=0.693 \mathrm{Vd} / \mathrm{T} 1-2=0.693 \times 5 / 6=0.5775 \mathrm{~L} / \mathrm{hr}$
18. - aminophylline (80% theophylline) was prescriped for asthmatic patient in a dose of 500 mg , half life $=6.93$ hours how many hours will it take to reach below 2 \%?
42 hr
Answer:
(80\%) ...T1... (40\%) ...T2... (20\%) ...T3... (10\%) ...T4... (5\%) ...T5... (2.5\%) ...T6... (1.25\%)

Time $=6 \times \mathrm{T} 1 / 2=6 \times 6.93=41.5 \mathrm{hr}$
19. Drug aminophylline (80% theophylline) in 500 ml sln. Half life 6 h .what is the concn of theophylline after 1 day ?
5\%
Answer:
1 day $=24 \mathrm{hr}=4 \mathrm{~T} 1-2$
(80\%)T1... (40\%) ...T2... (20\%) ...T3... (10\%) ...T4... (5\%)
20.For 1 litre of $\mathrm{NaCl} 3 \%$ calculate the osmolarity $\mathrm{m} . \mathrm{wt}=58.5$ 1026

Answer:
3% means 3 gm in 100 ml ... that means 30 gm in 1 L
No. of moles $=$ wt $/ \mathrm{Mwt}=30 / 58.5=0.513$ mole
Osm $=$ no. of mole \times no. of dissosation particles $=0.513 \times 2=1.026$
$1.026 \times 1000=1026$ mosm
21. If we give 250 ml of a drug and the area under curve was $112 \mathrm{mg} / \mathrm{hr} / \mathrm{L}$ and after that we give 500 ml and the area under curve was $56 \mathrm{mg} / \mathrm{hr} / \mathrm{ml}$ The bioavilability decreased by

A-25\%
b-50\%
c-75\%

Answer:
250ml 112
500 ml \qquad . X
$X=122 \times 500 / 250=224$
But real auc was $=56$
So the bioavilability decreasing $=56 / 224 \times 100=25 \%$
22. drug A taken IV and drug B taken orally
the AUC of $A=300$ and Auc of $b=225$
what is biovalbility of drug
A. 85%
B. 90%
C. 75%
D. 80%

Answer:
Bioavailability $=$ auc oral /auc iv $\times 100=225 / 300 \times 100=75 \%$
23.T $1 / 2$.. in frist line is
A.1/k

B. 0.693/ k

24. a drug is given as iv infusion in a rate of $2 \mathrm{mg} / \mathrm{hr}$, its $\mathrm{T} 1-2=2 \mathrm{hr}$, how much mg of the drug we need to reach steady state
A. 4 mg
B. 16 mg
C. 20 mg
D. 40 mg

Answer:
We reach steady state after $5 \mathrm{~T} 1-2=5 \times 2=10 \mathrm{hr}$
2 mg ...ever... 1 hr
Xmg ...after... 10 hr
$X=2 \times 10 / 1=20 \mathrm{mg}$
25. a drug with $\mathrm{T} 1 / 2=72 \mathrm{hr}$, the body will recive complete dose after ;
A. 1 day
B. 2days
C. 1week
D. 2weeks

Ans: We will reach Steady state after 5 half-life $=5 \times 72=360 \mathrm{hr}=2$ weeks
26. A patient takes levofloxacin $250 \mathrm{mg} / \mathrm{ml}$, the pharmacist has levoflaxacin injection $500 \mathrm{mg} / 20 \mathrm{ml}$, the concentration needs to be dilated for patient .. which of the following concentration is more accurate:

A/ 10 ml

B/ 15 ml
C/ 7.5 ml
Answer :
500 mg in 20 ml
250 mg in X
$X=20 \times 250 / 500=10 \mathrm{ml}$
27. priscription for a child contain Omeprazol syr. $10 \mathrm{mg} / \mathrm{ml}$ twice daily for a week .. you have Omeprazol capsul 20 mg in your pharmacy,
how many capsules are needed to prepare solution with concantration 2 $\mathrm{mg} / \mathrm{ml}$??

7 cap.

Answer:
$10 \mathrm{mg} / \mathrm{ml}$ twice daily for a week $=140$
20 \qquad 1

140 \qquad X
$X=140 / 20=7$
28.Drug 500 mg and 300 mg eleminated outside the body and $\mathrm{t} 1 / 2=5 \mathrm{hr}$ and another drug same first one but with conc 1000 mg .. how many hrs it take to eliminate 600 mg ot of the body?

5 hrs

Answer :
CLs=rate of elimination /drug conc
CLs1=300/500=0.6
$\mathrm{Vd}=\mathrm{t} 1 / 2 \times \mathrm{cls} / 0.693=5 \times 0.6 / 0.693=4.3$
CLs2=600/1000=0.6
$\mathrm{t} 1 / 2=0.693 \times \mathrm{vd} / \mathrm{cls}=0.693 \times 4.3 / 0.6=5 \mathrm{hrs}$
a-12ml of MGCL dissolve in 100 ml water

b-12 gm of MGCL dissolve in 100 ml water

c-12ml of MGCL dissolve in 1000 ml water
$\mathrm{d}-90.5 \mathrm{ml}$ of MGCL dissolve in 100 ml water
Note ; $\mathrm{w} / \mathrm{v}=\mathrm{g} / \mathrm{ml} \ldots . . \mathrm{ex} ; 4 \% \mathrm{w} / \mathrm{v}$ means 4 gm in 100 ml
30. man 40 years and 80 kg sr ce $0.5 \mathrm{mg} \backslash \mathrm{dl}$ find creatinie clearance $\mathrm{mg} \backslash \mathrm{ml}$:

a. 222

b. 232

Answer :
Cr.cl for male $=(140-$ age $) \times$ weight $/ 72 \times$ ser. Creatinine

$$
=(140-40) \times 80 / 72 \times 0.5=222
$$

N.B : The same data for female the answer is : 189

Cr.cl for female $=$ Cr.cl for male $\times 0.85=222 \times 0.85=188.7$
31.15 g of drug is added in 150 mg of a solvent. Then what is the total concentration of drug in the final mixture:
a-6.01\%
b- 9.10%
c- 10\%
d-15\%

Answer:
$15+150=165$
15 g in 165
$X \mathrm{~g}$ in 100
$X=100 \times 15 / 165=9.10$
32. A bag containing 250 ml of 25000 IU heparin

The patient weigh 70 kg should recieve $10 \mathrm{IU} / \mathrm{kg} / \mathrm{hr}$...calculate the amount in ml the the patient should recieve in one hour...
7 ml
Answer:
10 iu for 1 kg
X iu for 70 kg
$\mathrm{X}=70 \times 10 / 1=700 \mathrm{iu}$
250 ml of 25000 iu
X ml of 700 iu
$X=700 \times 250 / 25000=7 \mathrm{ml}$
33.Patient with prescription of Captopril 50 mg per tab with a dose of 100 mg daily for 4days and you only have the 25 mg tab .. How many tablets you will dispense?

16 Tab

Answer :
100 mg daily for 4 days $=400 \mathrm{mg}$ $400 / 25=16$ tab
34.A problem with the following data

Dose $=1000$
Initial conc=10
Elimination rate constant=0.1
Calculate total clearance ??
a-250
b-200
c-150
d-100

e-10 litre

Answer:
$\mathrm{Cl}=\mathrm{vd} \times \mathrm{kel}$
$\mathrm{Vd}=$ dose/conc=1000/10=100
$\mathrm{Cl}=0.1 \times 100=10$
35.Problem with the following data:

Density $=1.75 \mathrm{~g} / \mathrm{cm}^{3}$
Mass = 15 gm
Calculate the Volume?
a. 11
b. 10
c.8.52

Answer:
Denisty $=$ mass $/$ volume
volume $=15 / 1.75=8.57$
36.Prescription contain :

Clindamycin 1.5%
dilultion with alcohol up to 300 ml
you have a bottle 100 ml of 10% clindamycin
how many millelitres will you use ?
a.7.5
b. 45

Answer:
1.5 100

X 300
$X=4.5$

$$
10 .
$$ 100

$4.5 \ldots .$. X
$X=45$
37.A drug with Conc. 400 m and $\mathrm{T} 1 / 2=12 \mathrm{hr} . \mathrm{s}$ the concentration will decrease after 1 day by ...
a.10\%
b. 25%
c.75\%
d. 90%

Answer:
24 hr.s = 2 half lives
(400) ...T1 ... (200) ... T2 ... (100)
so you lose 300 of the drug
($300 / 400$) $\times 100=75 \%$
38. A drug should be given 50 ml of $2 \mathrm{meq} / \mathrm{ml}$, but available concentration is $10 \mathrm{meq} / \mathrm{ml}$, How many ml should dispense to patient?
a. 5 ml
b. 10 ml
c. 15 ml
d. 20 ml
e. 25 ml

Answer:
2mg -----1ml
X mg-----50ml
$X=50 \times 2=100 \mathrm{ml}$
$10 \mathrm{mg}------1 \mathrm{ml}$
100 mg------ X
$X=100 \times 1 / 10=10 \mathrm{ml}$
39. 30 gm of 1% hydrocortisone mixed with $40 \mathrm{gm} 2.5 \%$ hydrocortisonen what is the concentration of the resulting solution?
a) 3%

b) 1.85%

c) 10%
d) none of the above

Answer:
$\mathrm{C} 1 . \mathrm{V} 1+\mathrm{C} 2 . \mathrm{V} 2=\mathrm{C} 3 . \mathrm{V} 3$
$30 \mathrm{gm} \times 1 \%=0.3 \mathrm{gm}$
$40 \mathrm{gm} \times 2.5 \%=1 \mathrm{gm}$
So, 1.3 gm is in 70 gm
So, the con. $=1.3 / 70=1.857 \%$
40. if we have 90% of substance X solution, 50% of substance X solution, how mixing both to give 80% of substance X solution?

a-3:1

b-1:3
c-10:30
d- 5:9
Answer :
We should try all answer with that equation
$(\mathrm{C} 1 \times \mathrm{V} 1)+(\mathrm{C} 2 \times \mathrm{V} 2)=(\mathrm{C} \times \mathrm{V})$
$(90 \% \times 3)+(50 \% \times 1)=(80 \% \times 4)$
$(270)+(50)=(320)$
$(320)=(320)$ so the answer is 80%
Another answer :
90\% 80\% 50%
30
10
So .. 90/50 to reach 80% equal $30 / 10=3 / 1$ what conc. of coal tar in 500 ml :

100 part

Answer:
30 part present in 150 ml of prep.
X part present in 500 ml of prep.
so, conc. of coal tar in $500 \mathrm{ml}=30 \times 500 / 150=100$ part
42.How many grams needed from drug in one teaspoonful, if 5 tspfull doses contain 7.5 gm of drug ?
a) 0.0005
b) 0.5
c) 500
d) 1.5

Answer:
7.5 gm in 5 tsp \qquad
X gm in 1 tsp \qquad
$X=7.5 \times 1 / 5=1.5 \mathrm{gm}$
N.B: $1 \mathrm{tsp}=5 \mathrm{ml}$
$43 . \mathrm{KI}$ solu. has $0.5 \mathrm{mg} / \mathrm{ml}$ dissolve in 30 ml water calculate the amount of KI in the solu.?

15 mg

Answer :
0.5 mg in 1 ml

X mg in 30 ml
$X=0.5 \times 30 / 1=15 \mathrm{mg}$
44. - the dose of drug is 0.5 ml per day and the total amount of the drug Is 100 ml what is the total dose?
$\underline{200}$
Answer:
no. of doses $=$ amount of drug $/$ amount of one dose $=100 / 0.5=200$
45.if we have a solvent costs 150 riyal/kg and its specific gravity $=1.07$,so the cost for 100 ml of the solvent is :
16.05 riyal

Answer :
Weight $(\mathrm{Kg})=$ volume $(\mathrm{L}) \times s p$. Gravity $100 \mathrm{ml}=0.1 \mathrm{~L}$
$w t=0.1 \times 1.07=0.107 \mathrm{Kg}$
1 kg cost 150 riyal
0.107 kg cost X riyal
$X=0.107 \times 150 / 1=16.05$ riyal

46- A patient cholesterol level is equal to $4 \mathrm{mM} / \mathrm{L}$. This cholesterol level can be expressed in terms of $\mathrm{mg} / \mathrm{dL}$
(molecular weight of cholesterol $=386$)
A. $0.0154 \mathrm{mg} / \mathrm{dL}$
B. $0.154 \mathrm{mg} / \mathrm{dL}$
C. $1.54 \mathrm{mg} / \mathrm{dL}$
D. $15.4 \mathrm{mg} / \mathrm{dL}$
E. $154 \mathrm{mg} / \mathrm{dL}$

Answer:
Conversion from (mM) to $(\mathrm{mg})=$ conc. \times molecular weight
Conversion from (L) to $(\mathrm{dL})=$ conc. $/ 10$
Conc $(\mathrm{mg} / \mathrm{dl})=$ conc. $(\mathrm{mMol} / \mathrm{L}) \times \mathrm{mwt} / 10=4 \times 386 / 10=154.4$
47.drug container contain 90 mg each tablet contain 0.75 mg .
how many doses ?
No. of doses $=$ total $w t /$ wt of one dose $=90 / 0.75=\underline{120}$ dose

48- How need prepare benzacainamid conc. 1:1000,30cc of benzocainamid solution?
a-30 mg
b-50 mg
$\mathrm{c}-80 \mathrm{mg}$
$\mathrm{d}-100 \mathrm{mg}$
e-130 mg
Note : $\mathrm{cc}=$ cubic centimeter $=\mathrm{cm}^{3}=\mathrm{ml}$

Answer :
1 gm ----- 1000 ml
X gm ----- 30 ml
$X=30 \times 1 / 1000=0.03 \mathrm{gm}=30 \mathrm{mg}$
49. The Molal concentration of 0.559 M solution is ;
(Mwt=331.23 g/mol) (density of solution $=1.157 \mathrm{~g} / \mathrm{ml}$)
a-1.882
b-0.882
c-0.559
d-0.575
Answer:
Mass $=$ moles \times Mwt $=0.559 \times 331.23=185.15 \mathrm{gm}$
wt of solution $=$ Volume \times Destiny $=1000 \mathrm{ml} \times 1.157=1157 \mathrm{gm}$
so wt of solvent $=1157-185.15=971.85 \mathrm{gm}=0.971 \mathrm{~kg}$
molality $=$ moles $/ \mathrm{kg}$ of solvent $=0.559 / 0.971=0.575$ molal
50.Problem asked to calculate Plasma Osmolarity
an you have given some data
Na 140
CI 103
Hco3 18
Bun 8
S.cl 8

Answer is : $\underline{\mathbf{2 6 3}}$
N.B:

- the data of this problem isn't complete here .. 263 is the right answer just know it
- in general .. to calculate plasma osmolarity follow this equation : $2[\mathrm{Na}]+[$ Glucose $] / 18+[B U N] / 2.8$

51. drug decrease after 2 hr to 50% \&the user takes it every 2 hr how many hours needed to reach steady state?

A/2-4
B/6-8

C/10-12

Answer:
Time to reach steady state ((Tss)) $=4$ to $5 \mathrm{~T} 1 / 2$
$4 \times 2=8 \ldots . .5 \times 2=10$
N.B: if there is ((8-10)) if choices ... choose it
52. 10 g of a drug was dissolved in 150 g of solvent, what is the final concentration?

6.25\%

Answer:
10 ... 160
X.... 100
$X=100 \times 10 / 160=6.25 \%$
53.A physician prescribed paracetamol $120 \mathrm{mg} / 5 \mathrm{ml}$ to take 10 ml every 8 hours but the pharmacist has only paracetamol $160 \mathrm{mg} / 5 \mathrm{ml}$. what is the volume to be administered to give the effect of the first dose :
a- 6.5 ml
b- 7.5 ml
c- 10 ml
d-11 ml
Answer:
dose $=240 \mathrm{mg}$ paracetamol
160 mg in 5 ml
240 mg in X ml
$X=240 \times 5 / 160=7.5 \mathrm{ml}$

$$
\text { calculate its concantraion after } 3 \text { hours : }
$$

a. 25
b. 12.5
c.6.25

Answer :
100 .. [1hr] .. 50 .. [2hr] .. 25 .. [3hr] .. 12.5
55. how many gm of water add to 5% KCL soln to make 100 gm of solution (wlw) ?

95gm

N.B: $5 \%(\mathrm{w} / \mathrm{w})$ means 5 gm of KCl in 95 gm of water and solution total $\mathrm{wt}=100$
56. 1000 mg of drug follow one compartment. calculate vd ?

Time	0 hr	2 hrs	4 hrs	6 hrs	12 hrs
Conc $\mathrm{mg} / \mathrm{ml}$	80	58	34	28	10

A.12.5 litre

B. 4 litre
C. 45 litre

Answer:
$\mathrm{Vd}=$ dose / initial conc.
$V d=1000 / 80=12.5 L$
57. Drug dose 1000 mg orally

Time	0 hr	$2 \mathrm{hr} . \mathrm{s}$	4 hr.s
Conc.	40	18	8

What is the Vd of the drug?
a. 55 litre
b. 45 litre
c. 75 litre
d. 25 litre

Answer:
$\mathrm{Vd}=1000 / 40=25 \mathrm{~L}$

58. HOW can prepare 100 ml of $12 \% \mathrm{MgCl}$ by taking?
a-12ml of MgCl dissolve in 100 ml water
b-12 $\mathbf{~ g m}$ of $\mathbf{~ M g C l}$ dissolve in 100 ml water
c- 12 ml of MgCl dissolve in 1000 ml water
$\mathrm{d}-90.5 \mathrm{ml}$ of MgCl dissolve in 100 ml water
e- 0.95 ml of MgCl dissolve in 100 ml water
59. How many grams of drug used to prepare 150 ml solution ,, if one tsp contains 7.5 mg of drug
a. 4 gm
b. 0.225 gm
c. 2.25 gm

Answer:
7.5 mg in 5 ml
$X \mathrm{mg}$ in 150 ml
$X=150 \times 7.50 / 5=225 \mathrm{mg}=((225 / 1000)) 0.225 \mathrm{gm}$
60. Patient takes dose $20 \mathrm{mg} / \mathrm{kg} /$ day what is the dose if patient weight 60 pound?

$545 \mathrm{mg} / \mathrm{day}$

Answer:
you have to know .. $1 \mathrm{~kg}=2.2$ pound (lb)
20 mg -------- 2.2 lb
X mg 60
$X=60 \times 20 / 2.2=545.45 \mathrm{mg} /$ day
61.A child was prisciped a drug with dose $65 \mathrm{mg} / \mathrm{kg} / \mathrm{hr}$.. his body weight $=$ 35.2 pound

Calculate the dose ..

a. 1.040 gm

b. 10.40 gm

Answer:
35.2 pound $=15.97 \mathrm{~kg}=$ about 16 kg
$65 \mathrm{mg} . . .1 \mathrm{~kg}$
X mg ... 16 kg
$X=16 \times 65=1040 \mathrm{mg}=1.040 \mathrm{gm}$
62.Calculate the Specific gravity of a substance of volume $=121.92 \mathrm{ml} \& \mathrm{wt}=$ 107.5

A/1.88 s.g.
B/2.88 s.g.
C/0.88 s.g.
D/8.8 s.g.
Answer:
Denisty = wt. / volume

$$
=107.5 / 0.12192=881.7
$$

Sp. Gravity $=$ denisty Of substance $/$ den. Of water $=881.7 / 1000=0.88$
63. The ppm concentration of a $6.35 \times 10-6 \mathrm{M}$ solution of sucrose (Mwt of sucrose is $342.3 \mathrm{~g} / \mathrm{mole}$) is:
A. $2.174 \times 10-3 p p m$

B.2.174 ppm

C.2.174 $\times 10-6 \mathrm{ppm}$

Answer:
ppm concentration $=$ mass in $\mathrm{mg} /$ volume in liters
Molar conc means no. of mole in 1 liter then volume $=1 \mathrm{~L}$
mass $=$ moles \times Mwt $=6.35 \times 10-6 \times 342.3=2.174 \times 10-3 \mathrm{gm}=2.174 \mathrm{mg}$
Then 2.174 mg is in $1 \mathrm{~L}=2.174 \mathrm{ppm}$
64. A 500 infusion bottle contains 11.729 mg of potassium chloride (KCI). How many mEq of KCl are present? (Mwt of $\mathrm{KCI}=74.6$)

A. 0.1571 mEq

B. 1571 mEq
C. 6.37 mEq
D. 0.00637 mEq

Answer :
$\mathrm{mEq}=\mathrm{wt}(\mathrm{mg}) \times$ valency $/ \mathrm{Mwt}=11.729 \times 1 / 74.6 \mathrm{mEq}=0.1572$
65. Fifty micrograms equals:
a-50000 (nanogrames)
b- 0.05 (milligrams)
c- 0.0005 g
d-a and b
$e-a$ and c
Note; ... mc-g = 1000 nano-g ... milli-g = $1000 \mathrm{mc}-\mathrm{g} . . \mathrm{g}=1000 \mathrm{mg}$
66. a $2 \mathrm{mg} / \mathrm{L}$ solution , according ppm

a-2 ppm

b-0.002 ppm
c-0.000002 ppm
Note ; ppm = mg / L
ppm : part per milion
67. What is The Specific gravity of substance has Weight=Y \& The volume is X ?
$\underline{Y / X}$
Answer:
The Specific gravity =Density of the substance/Density of water Density of water $=1 \ldots$. Density of substance $=$ weight/volume So, the sp. gravity of sub. =weight $(\mathrm{Y}) /$ volume $(\mathrm{X}) / 1=\mathrm{Y} / \mathrm{X}$
68. drug decrease to 50% of its plasma conc. after 2 hr .. we have dose A given each 2 hr and dose B given each 4 hour ... in dose B what is the plasma conc. at steady state ?
A/0.25
B/0.5
C/2
69.Calculate C av .ss

1 gm vancomycin for patient 78 kg Taken by infusion rate $12 \mathrm{hr} / 7$ day
T 1/2 =8
$\mathrm{Vd}=1 \mathrm{k} / \mathrm{l}$
A. 3
B. 5
C. 17
D. 19

We can't find the right answer .. try to solve it ©
70.Paitents on treatment with acyclovir and famcyclovir .. group that treated by acyclovir show recurrence by 27% and who treated by famcyclovir show recurrence by 25%
the ques. is how many patients should take famcyclovir over than who take acyclovir per year to reach equivilant results ?
The answer is : cannot be calculated because of low information
71.Patient's dose of some drug is 0.5 mg daily and $\mathrm{Vd}=500 \mathrm{~L}$.. his body elimination rate is 110.16 Litre per day ... in the last day about 80% of the drug was in his blood
Calculate half life ..

3 days

Answer:
$\mathrm{Cl}=0.693 \mathrm{xvd} / \mathrm{T} 1.5$
$\mathrm{T} 1 / 2=0.639 \times 500 / 110.16=3.14$ day
72.Problem with data :
drug $10 \mathrm{mg} / \mathrm{ml}$ and $\mathrm{t} 1 / 2=3 \mathrm{hrs}$
how much hrs needed to reach steady state??
12-15
Answer:
Time required to reach steady state (Tss) $=4-5 \mathrm{t} 1 / 2$
$4 \times 3=12$ \qquad $5 \times 3=15$
73. drug $\mathrm{t} 1 / 2=2 \mathrm{~h}$.. dose A taken every 2 h and dose B taken every 4 h compare plasma concentration a to b..
a.1/2
b. 2
74. A half life of a drug decrease by 50%, after how hours will the time needed to decrease to 2\%
a. 2 b. 10 c. 5 d. 12

Answer:
100\% .. [T1] .. 50\% .. [T2] .. 25\% .. [T3] .. 12.5\% .. [T4] .. 6.25\% .. [T5] .. 3.1\%
.. [T6]
1.5% so we need 6 half lives to reach below 2% \qquad $\mathrm{T} 1 / 2=2 \mathrm{~h}$.
$2 \times 6=12$ h.
75.A problem with thin curve and ask for therapeutic range answer: $8 / 2=\underline{4}$

- in other exams the same curve with LD50 $=20$ \& ED50 $=5$ so $\mathrm{TI}=\mathrm{LD} 50 / E D 50=20 / 5=4$

76.which drug has higher bioavailability ?
1.A ... 2.B ... 3.C ... 4.D
N.B : bioavilability measured by comparing plasma level higher plasma level = higher bioavailability

77.Which drug of the following has the safest margine ?
1.A ... 2.B ... 3.C ... 4.D
N.B : safest margine $=$ higher therapeutic index

Summary of the important problems :

2.Cold cream with two concentrations : 20gm from 1\% and 40gm from 2.5\%
3.Cold cream ((how many ml uses)) : $\mathbf{2 0} \mathbf{~ m l}$
4.Ca correvted to albumin : $\underline{\mathbf{2 . 3}}$
5.Osmolarity of $\mathrm{NaCl}: \underline{\mathbf{1 0 2 6}}$
6.AUC bioavailability $((112,500)): \underline{25 \%}$
7.AUC bioavailability ((300, 225)) : 75\%
8.Levofloxacin: $\mathbf{1 0 \mathrm { ml }}$
9. Omeprazol : 7 cap.
10.Crcl of Male, $40 \mathrm{y}, 80 \mathrm{~kg}$ with Scr: $0.5 \mathrm{mg} / \mathrm{dL}: \underline{222 \mathrm{ml} / \mathrm{min}}$
11.the same problem but for female : $189 \mathrm{ml} / \mathrm{min}$
12. Heparin bag : $\mathbf{7 \mathrm { ml }}$
13.Captopril : $\mathbf{1 6}$ tablets
14.Clindamycin : $\mathbf{4 5}$
15. Plasma Osmolarity : $\mathbf{2 6 3}$
16.Paracetamol : 7.5 ml

17 .gm of water add to $5 \% \mathrm{KCL}((\mathrm{w} / \mathrm{w})): \underline{95} \mathbf{~ g m}$

Don't Forget to Study the other Files (Cases \&Pharma Questions)
Good luck ©

